منابع مشابه
Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor
We report a new method of achieving tip–sample distance regulation in an atomic force microscope ~AFM!. A piezoelectric quartz tuning fork serves as both actuator and sensor of tip–sample interactions, allowing tip–sample distance regulation without the use of a diode laser or dither piezo. Such a tuning fork has a high spring constant so a dither amplitude of only 0.1 nm may be used to perform...
متن کاملIntroduction to the quartz tuning fork
We discuss various aspects of the quartz tuning fork, ranging from its original purpose as a high quality factor resonator for use as a stable frequency reference, to more exotic applications in sensing and scanning probe microscopy. We show experimentally how to tune the quality factor by injecting energy in phase with the current at resonance quality factor increase or out of phase quality fa...
متن کاملAtomic Force Microscopy Sidewall Imaging with a Quartz Tuning Fork Force Sensor
Sidewall roughness measurement is becoming increasingly important in the micro-electromechanical systems and nanoelectronics devices. Atomic force microscopy (AFM) is an emerging technique for sidewall scanning and roughness measurement due to its high resolution, three-dimensional imaging capability and high accuracy. We report an AFM sidewall imaging method with a quartz tuning fork (QTF) for...
متن کاملImplement and Research on the Miniature Quartz Tuning Fork Temperature Sensor
Temperature sensor using piezoelectric quartz tuning fork resonators have attracted much interest due to their simple structure and potentially high sensitivity. In this paper, we present the fundamental limits of the use of quartz tuning fork (QTF) for temperature sensor. The QTF temperature sensors are tuning fork quartz crystal vibrating in flexural model and optimally designed with a therma...
متن کاملReal-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor
A chemical sensor for ozone based on an array of microfabricated tuning forks is described. The tuning forks are highly sensitive and stable, with low power consumption and cost. The selective detection is based on the specific reaction of the polymer with ozone. With a mass detection limit of ∼2 pg/mm(2) and response time of 1 second, the sensor coated with a polymer sensing material can detec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nanomedicine & Nanotechnology
سال: 2017
ISSN: 2157-7439
DOI: 10.4172/2157-7439.1000451